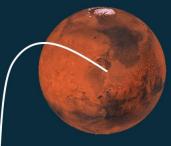


MISSION TRANSIT



Mission Goals and Requirements

- Transport cargo to Mars before crewed landing
- Transport habitat and lab facility to Mars
- Launch communications satellites
- Safely transport astronauts to Mars
- Safely return astronauts to Earth

Team Responsibilities

- Orbital Mechanics
 - Transfer Windows
 - Delta V
 - Orbital Trajectories
 - Free Return Trajectory
 - Venus Flyby
- Mass Budget
 - Propulsion Systems
 - Launch Vehicles
 - Cargo
 - Crew

- Entry, Descent, Landing
 - Landing System
- Risks
 - \circ Radiation
 - Health Concerns

Go From LEO to Lunar Gateway

- Circular Orbit Around Earth
- Elliptical Transfer Orbit
- Hyperbolic Encounter With Moon
- Near-Rectilinear Halo Orbit

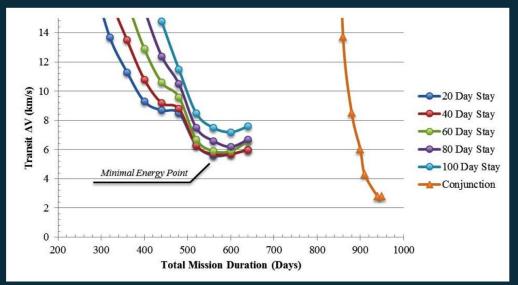
$$\Delta V_1 = |\sqrt{\frac{3.986*10^5}{6878}} - \sqrt{(3.986*10^5)(\frac{2}{6878} - \frac{1}{\frac{384400+6878}{2}})}| = 3.058$$

$$\Delta V_2 = |\sqrt{(3.986*10^5)(\frac{2}{408439} - \frac{1}{384400})} - \sqrt{\frac{3.986*10^5}{404949}}| = 0.037$$

$$\Delta V_3 = |\sqrt{\frac{(2)(4.905*10^3)}{5307.1}} - \sqrt{\frac{4.905*10^3}{5307.1}}| = 0.398$$

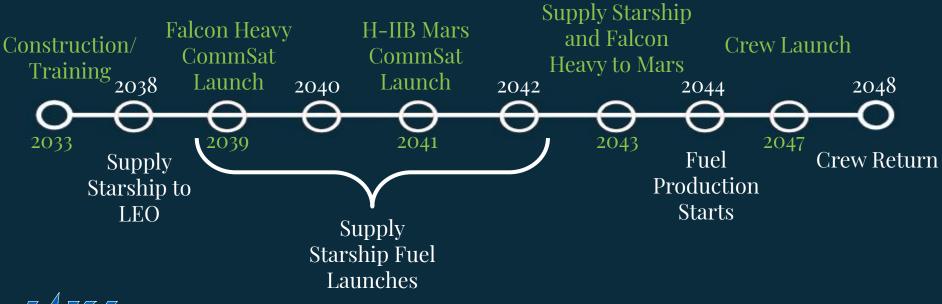
 $\Delta V_{total} = 3.492$

Math Necessary to Map This Transfer



Orbits and Trajectories Earth-Mars

- Conjunction Class Trajectory Slingshot Around Venus
- EVME Free Return Trajectory
- The Return Trip will Take Advantage of an Open Hohmann Transfer Window


 $\Delta V\, vs$ Mission Duration to Reach Mars

Mass Budget & Launch Vehicles

SpaceX Cargo Starship	SpaceX Falcon Heavy (1 & 2)	Mitsubishi H-IIB	SpaceX Crew Starship
Payload Total: 99,800 kg Hydrogen for fuel production Hydrogen cooling systems	Falcon Heavy 1 Payload Total: 11,355 kg Methane generator & nuclear power source JAXA robots	Payload Total: 665 kg Main Satellite for communications network	Payload Total: 84,240 kg Astronaut Crew (5) Scientific Payloads Life support Payloads In-Transit technology
	Falcon Heavy 2 Payload Total: Relay comm. satellite: 1,500 kg		

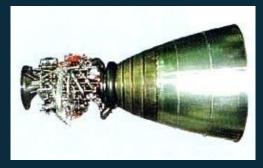
NASA

Starship (SpaceX):

- Holds up to 1200 tons of propellants
- 6 Raptor Engines (3 sea-level engines and 3 vacuum engines)
 - \circ Liquid oxygen (LOX) and methane (CH₄)

Falcon Heavy (SpaceX):

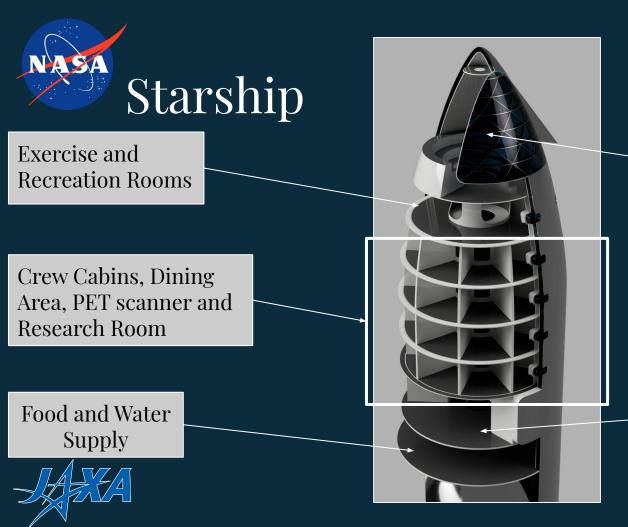
- Merlin Engines
 - Liquid oxygen (LOX) and rocket-grade kerosene
- Second Stage: Merlin Vacuum Engine


H-IIB (JAXA):

- Liquid hydrogen and liquid oxygen
- Liquid rocket engine (LE–5B) in the second stage

Cargo Capsule:

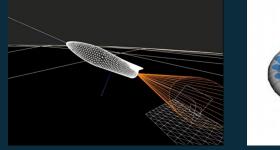
- 2 Merlin Vacuum Engines
 - Liquid oxygen and rocket-grade kerosene (RP-1)



Starship (designed by SpaceX)

- Reusable
- Has the ability to carry enough storage for all of the food and water needed for the journey
- Includes life support and other necessities
 - Living quarters
 - Research
- CAREA °
 - Recreation

Navigation and Communications


General Storage

Entry, Descent, and Landing

- Starship Landing
 - Orbital injection
 - Atmospheric aerobraking
 - Landing burn

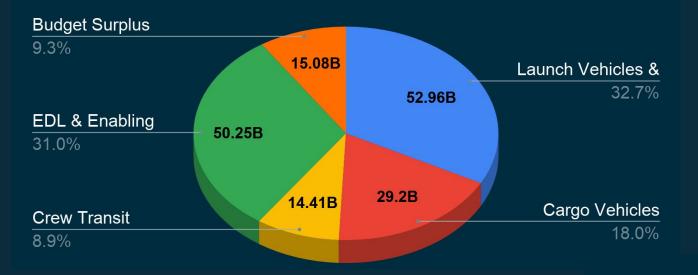
Starship Retroburn

HIAD

- Cargo Capsule Landing
 - Orbital injection and retro burn to Atmospheric entry
 - Heat Shield + Hypersonic Inflatable Aerodynamic Decelerator (HIAD)
 - Radially positioned engines for suicide burn
 - Cushioned landing

Mars Ascent Vehicle

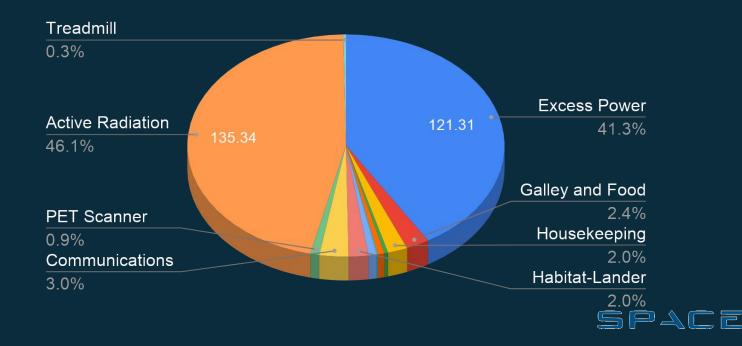
- Crew SpaceX Starship
 - Refueled through Sabatier Process
 - From Supply Starship
 - Converted into MAV for Crew Return
- Launch Sequence, January 2048
 - \circ Ascends and shifts to 45°, prograde
 - \circ Azimuth 88°
 - \circ $\,$ Burns 3.6 km/s Δv to escape LMO $\,$
 - ~670,000 kg propellant
 - ~528,188 kg LOX
 - ~142,754 kg LM



Transit Aspect v.s. Cost in Billions (U.S.D.)

Total Budget: 162 Billion U.S.D.

- Power source: Solar
 - Crewed Starship
 - Similar to ISS
 - Cargo Starship and Falcon Heavy I
- Large Capacity Batteries
 - Buffers power systems
 - Not every system is constantly active
 - Power failsafe in case repairs are needed
 - Highest capacity in the Crewed Starship
- Cryocoolers and Thermal Systems to maintain equipment



Total Power Usage of Crew Starship (172.46 kW/293.76 kW)

- Electrostatic Active Shielding
 - Like charges repel one another
 - Van De Graaff generator
 - Most effective for Solar Particle Events and Galactic Cosmic Rays
 - Advantageous in the Van Allen Belt
- RXF1 (Polyethylene based material)
 - Crew Cabins
 - Passive Shielding

Pre/Post Mitigation

5					A1
4					B 1
3				E 1	C1, D1
2				B2	A2
1				E2	C2, D2
	1	2	3	4	5

Consequence

Likelihood

	Pre LxC	Risk	Mitigation	Post LxC
A	(5, 5)	Env.	Cleaning, Redesign, Back-up	(2, 5)
B	(4, 5)	Power	Back-up sources	(2, 4)
С	(3, 5)	Fuel	Before arrival	(1, 5)
D	(3, 5)	EDL	Testing	(1, 5)
E	(3, 4)	Radiation	Protection, Back-up	(1, 4)

Physical health concerns

- Long term exposure to radiation
- Lack of adequate nutrition
- Harmful effects of microgravity
 - $\circ \quad \text{Combated with the ARED} \\$

Mental health concerns:

- Extended confinement/isolation
- Boredom
- Trouble sleeping

Thank you!

Any questions?

