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Open Vehicle Sketch Pad, or OpenVSP, is a versatile open-source parametric tool for 

aircraft design. Originally developed by NASA, OpenVSP is a crucial part of modeling 

aircraft and designing prototypes that are later exported into computational fluid dynamics 

(CFD) software. Although it excels at importing various aircraft components, the lack of a 

dedicated engine component makes it difficult to ensure accurate CFD calculations, especially 

when it comes to engine-airframe integration and drag prediction. This paper details the 

design of a customizable turbofan engine component for OpenVSP, allowing users to 

incorporate engine design into their aircraft model alongside all the other features. The 

component has fully customizable parameters and special features that ensure engine effects 

can be incorporated into design and not overlooked. This model is currently available on 

GitHub2, and is easily incorporated into OpenVSP, improving the accuracy of aircraft 

modeling. 

I. Introduction 

When designing aircraft, the process always starts with the most fundamental concepts that govern flight. Design 

often begins with the analysis of parameters like surface area and how they affect the drag an aircraft will experience. 

These calculations can easily be approximated by analyzing the basic geometric shapes that make up said design— 

flat planes, cylinders, etc. Due to information that is readily available now, the amount of drag an object of known 

size would experience in different situations can be calculated. By analyzing the combined surface area of the wings, 

fuselage, and other entities of a plane, a drag estimate can be mathematically approximated. These kinds of basic ideas 

have been continuously developing and improving, and the technology available now allows for very detailed analysis 

of aircraft aerodynamics. The problem arises when the accuracy of the calculations vastly exceeds the accuracy of the 

geometry itself. Extremely detailed and advanced calculations of drag and other aerodynamics will only be useful if 

the model on which these calculations are being run is accurate and realistic. 

When it comes to engine modeling, important details are often overlooked in comparison to the rest of the aircraft, 

and simple, cylindrical engine components are added to more detailed aircraft models. With the currently available 

features, the usual technique is to either model the engine as a generic hollow tube with jump conditions assuming a 

uniform flow stream, or to skip the engine in its entirety. This is troublesome because the analysis that results from 

these models will never reach its maximum potential when it comes to accuracy. The design of the customizable 

turbofan engine component for OpenVSP aims to help resolve this lack of accuracy. This component, like other custom 

components in OpenVSP, allows the user to add the engine to a model with one click and then modify it using different 

parametric sliders. Although there are options to add wings, fuselages, and many other features to models, there is 

unfortunately no engine component. Currently, an engine can be designed using the stack feature; however, this 

involves the user going through and defining the figure cross-section by cross-section, which is a very time-consuming 

process. Additionally, the technique of defining an engine with stacks malfunctions if a parameter is adjusted in a way 

that is not ideal for the software. Consequently, there is a need for a model that can easily be added to the model like 

any other OpenVSP component, can be modified intuitively and visually, and is more automated than something like 

a stack. 

  

 
1Student, University of Virginia, Mechanical Engineering 
2Link to code: https://github.com/NatBretton/CustomizableTurbofanEngineComponent_OpenVSP/tree/main 
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Although this custom component is not meant to be a one hundred percent precise engine model, by allowing the 

user to quickly define things like inlet strength, maximum diameter, and nacelle length, a more accurate geometry can 

be efficiently created. The need for a customizable engine component is only growing as people are increasingly using 

computational fluid dynamics (CFD). Models are being imported; however, the accuracy of their geometry is not 

catching up to the fidelity of the solver. In other words, very good calculations are done on subpar or unrealistic 

models. The goal of this engine component is to bridge the gap between user-friendly, visual, engine design and 

accurate aircraft modeling and CFD calculations using OpenVSP. 

A. OpenVSP 

     OpenVSP, or Open Vehicle Sketch Pad, is a parametric aircraft geometry tool that allows users to quickly draft 

aircraft like the one shown below (Figure 1). This is one of the main aircraft design programs used by NASA and is 

effective at allowing users to construct the framework of planes efficiently. Using this software, the user can import 

various custom components and modify important parameters in a simple, visual, and intuitive way [1].  

 

 
 

Figure 1.  Basic Demonstration of OpenVSP Aircraft Modeling. An example of a plane 

modeled in OpenVSP is shown above. Some of the different custom component features that  

are available, like the wings and fuselage, can be observed. 

 

There were several ways that the engine design could have been approached, including built-in components and 

advanced linking, but it was decided that using a custom VSP part would be the easiest and most effective way.  Built-

in components in VSP are more difficult to design, and modifying them becomes a bit more complicated, limiting the 

user’s freedom. Additionally, advanced linking was experimented with, however, it did not allow for enough control 

of the different parameters. It was concluded that designing a custom part was the best way to give the user optimal 

control over the engine while ensuring that the coding process is manageable. It is also a very straightforward process 

to alter, customize, or personalize a custom VSP part, so if a certain project calls for a feature of the engine to be 

modified, the user can easily do that.  

II.   Methodology 

 

A. Advanced Linking  

 

     As mentioned before, a process called advanced linking was experimented with in the search for an appropriate 

engine design method. Advanced linking is a capability of OpenVSP that allows a user to relate two or more 
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components to each other through equations. This makes it so that if one feature of a part is altered, a separate feature 

will vary with it according to the imputed equation. For example, Figure 2 shows a cylinder where diameter and length 

were linked together such that the cross-sectional area of the cylinder was always three times its length. Therefore, 

when the inputs (diameters) were changed, the length changed with it. 

 

 
 

Figure 2. Advanced linking of two cylinders. Figure 2 demonstrates how  

features of different components can be linked together. By adjusting the  

diameter of the cylinder on the left, the length and diameter of the cylinder on the  

right is adjusted accordingly. 

  

     Theoretically, this linking could correlate different parameters with each other in a multitude of different ways, 

only limited by the difficulty of the mathematical equations used. Figure 3 shows how the advanced linking for the 

cylinder example above is set up, with a section for input parameters, output parameters, and the code relating the 

two. Potentially, this kind of linking would have been used for something like inlet design or nacelle shaping, where 

there is logically a certain shaping that works best for aerodynamics. If a user wanted to adjust a parameter, say inlet 

length, then the thickness and shaping of the cowl would automatically be changed in a way that kept the inlet a proper 

shape for airflow. 

 

Figure 3. Graphical User Interface used for advanced linking. The figure  

above shows how different parameters can be linked by adding defining equations 

to create a relationship between them. Inputs can be seen in the top left, and  

outputs in the top right. 
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     In the end, advanced linking was not used because one of the main goals was to make a fully customizable engine. 

If the parts were all linked to each other given specific equations already set in place, it took away a certain aspect of 

freedom that should be available. Additionally, the math and equations necessary to link a whole engine model would 

become complicated and hard to keep track of quickly. It was decided that advanced linking is better used for small-

scale parameter linking instead of a whole turbofan engine model. However, this feature is still a very useful capability 

of OpenVSP and can be applied individually by the user to the customizable engine VSP part. 

 

B. Custom Component Setup 

 

     After exploring some of the other options previously mentioned, it was decided that the custom VSP component 

was the most all-encompassing way to design a part with all the necessary features.  The custom component feature 

allows users to seamlessly add their geometries to the already available ones in OpenVSP. These parts are coded using 

an open-source language called AngelScript that follows a C++ syntax. The exact application program interface (API) 

is available online and accessible for anyone to look at and use. This makes it easy for anyone to design a custom 

component specifically for what they are working on. Since these custom components are made from scratch, the 

turbofan engine component was designed such that every part of it can be adjusted but the user, with more attention 

added to the most integral parts of the engine.  

     The custom component was by establishing each of the cross-sections on the engine and using variables to define 

the adjustable parameters. These variables were then organized into the graphical user interface (GUI) so that the 

dimensions and locations of the cross-sections could be adjusted using sliders. This provides a straightforward and 

visual way for users to modify their engine design while ensuring that all of the complicated code remains behind the 

scenes. This code can be done in any text editor as long as it is saved as a .vsppart file to the “CustomScripts” folder 

of the OpenVSP application. This folder contains all of the scripts for the currently available parts in VSP like the 

fuselage, wings, and stacks. When the user runs OpenVSP it calls all of the custom scripts in the folder and they will 

automatically be available to add to the model. Figure 4 shows the appearance of the custom scripts folder and the 

GUI in OpenVSP with all of the components. 

 

 
 

Figure 4. CustomScripts setup as seen on a computer. Figure 4 shows how the CustomScript for the engine 

component can be saved to the OpenVSP application folder on a computer and then opened in OpenVSP as a custom 

component. The program ‘Scarf’ represents a model of the engine with scarfing, and when saved to the CustomScripts 

folder of the OpenVSP application, the app can be opened and the scarf component can be imported with one click. 

 

 

C. Engine Component Layout 

 

     The Custom Component was designed with three main tabs that cater to an intuitive modeling process for the user. 

There are a few tabs that are included in all OpenVSP custom parts that involve placement of the part, rotation, color, 

cross-section tessellation, etc. However, the three main tabs unique to the custom engine component are the Engine, 

Nacelle, and Strengths tabs. The goal of this setup was to make it as easy and swift as possible for a user to customize 

an engine specific to their needs. It is recommended that the user start the modeling process in the “Engine” tab. This 

is where the main geometry of the engine will be defined. If a user wants to design an exact replica of an engine on 

D
ow

nl
oa

de
d 

by
 N

at
al

ie
 B

re
tto

n 
on

 A
ug

us
t 5

, 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
4-

45
54

 



5 

 

the market they have two options. One is a special feature that OpenVSP has allowing the user to take a technical 

image and add it to the background as a guide while creating the engine model. The second option would be to look 

up the technical specifications of the engine and use those values to define the engine model. For the engine tab, these 

specifications would include things like the size of the spinner, the diameter of the fan face, and generic features of 

the internal engine components.  

     Next, the user would move on to define the features included in the Nacelle tab. Although the engine tab was made 

to focus on the interior and mechanical portions of the engine, the nacelle tab focuses on the external geometry of the 

engine’s shell. This tab includes parameters like inlet defining features, nacelle shaping, and exhaust areas. The 

detailed definition of these exhaust areas allows the user to simulate the engine’s boundary conditions more accurately 

and therefore provide more beneficial and realistic calculations. These options are one of the main goals of this model 

and emphasize the difference between the customizable engine component and just using a simple stack or cylinder 

with jump conditions to replace an engine model. Shaping in the nacelle tab is what allows the engine to be truly 

modeled as a dual-flow engine instead of a simple flow-through model. 

     The last tab is the strengths tab and focuses on the more detailed geometry of the engine when it comes to shaping 

curvature. The term strength is an OpenVSP concept that is not intuitive and can be difficult to visualize when 

modeling. It refers to the curvature of a line by numerically defining how far out a line tangentially goes from its cross-

section before curving to meet the next cross-section. If a user were to design an engine from scratch and try to control 

the strengths of each individual cross-section this process can quickly get confusing and overwhelming. By adding 

these strength components into a model in a well-defined tab with an intuitive GUI, users can tune the fine details of 

the model more visually. 

 

III.    Engine Component Features 
 

     The most difficult part of the engine design process was determining what parameters should be available to 

modify and which should be defined behind the scenes. During this process, decisions had to be made about how 

and what different variables would be controlled. For example, choosing to set a bypass ratio as an adjustable area 

ratio, or letting the user control the inner and outer diameters separately. These decisions were made to appeal to a 

target audience that understands aerospace terminology like nacelle length and bypass ratio but might not be familiar 

enough with OpenVSP to know the specific title that a given cross-section might have. By making the engine 

component automated, and choosing the most integral components to automate with visual, intuitive sliders, users 

with experience in many different realms of aerospace design can easily catch on and quickly develop an engine 

model regardless of previous experience with OpenVSP.  

     Given these difficult decisions about how to define certain variables, the engine design process might not 

perfectly fit every case scenario. However, since the code is so easy to modify, it is a simple process to go and alter 

how certain parameters are controlled. Additionally, users can add more specificity and tie several sliders together 

using the advanced linking techniques that were previously mentioned. All of this makes the model incredibly 

adaptable for all different kinds of users and their unique projects. The customizable features of the engine, nacelle, 

and strengths tab are introduced below. 

 

A. Engine Tab 

 

     The engine tab controls a majority of the engine's internal geometry. The goal here was to work from the inside 

out, where things like bypass ratio and turbine diameter are defined first. If the user follows the tabs in order, the 

design process will go smoothly, and they should not have to readjust parameters due to changes made by altering a 

different parameter. Values for the engine tab might be taken from the engineering specifications of a given model. 

In that case, if a user knows the exact size of an engine component, they can directly type the value in to the right of 

the slider. Figure 5 shows the Engine tab and includes only a few parameters to define the basic size of the interior 

geometry. It includes the length and diameter of the spinner at the front of the engine, the diameter of the fan face, 

and the engine length and turbine diameter at the exit. Note that the spinner diameter and the fan diameter are the 

two cross-sections that define the area of the fan face, and thus define the engine bypass ratio. The decision was 

made to keep these values defined by diameter and not area to give the user more control over the engine. However, 

if a user prefers to look at the parameters as an area value, all they have to do is enter a quick equation into the 

advanced linking settings, and they can tie the two features together. Alternatively, a minor modification could be 

made to the code itself to add a slider specifically for bypass ratio in place of the diameters. 
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Figure 5. Slider setup of the Engine tab. The configuration of the Engine tab can be seen  

above, along with the 5 sliders that allow for unique customization of the interior turbine portion 

of the model. 

 

B. Nacelle Tab 

 

      The next tab to the right is the nacelle tab which focuses on the shaping and geometry of the nacelle itself. In this 

tab, the user selects basic values to define the engine's inlet and body. For inlet design, this includes the length of the 

inlet, the diameter of the highlight cross-section, which is the leftmost cross-section in the engine model, and the 

scarfing of the front of the engine. This tab is also where the user gets to define the maximum diameter of the 

nacelle, how far the nacelle extends, and where in the x-direction this max diameter is located. Once the user has 

completed setting all of these values, they should have a fully defined engine and outer nacelle that is accurate and 

only took a minute or so to create.  

      The next components in the nacelle tab involve the fan and core exhaust areas, enhancing the model’s specificity 

for CFD calculations. One of the main goals of this model was to surpass the mathematical accuracy of current 

design methods like flow-through engines and hollow tubes when it comes to CFD analysis. By allowing the user to 

define the fan and core exhaust areas, if the engine is uploaded into CFD software it will have fully defined 

boundary conditions for a dual stream engine. These area values can be found in specification documents or 

approximated and will provide more all-encompassing CFD calculations than a generic flow-through engine would. 

Additionally, two more sliders control the fan and core exhaust choke areas. Although the fan and core exhaust areas 

control the area of the surface right as the flow exits the engine, the choke sliders allow the user to specify the area 

of the exit as the air from the engine exits the entire model and enters the surrounding atmosphere. Figure 6 

demonstrates the area of the engine model that each of these sliders control. Lastly, the remaining two sliders control 

the length from the fan exhaust face and the core exhaust face to each of their respective chokes.  

 

 
 

Figure 6. Diagram of engine exhaust with labeled sliders. This figure provides clarification 

on which sliders control which portions of the rear engine. The lengths are defined by  

horizontal lines across the nozzles, and the areas are represented by color-coded vertical lines 
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C. Strengths Tab  

 

     After defining the model according to the engine and nacelle tab, the engine should look very close to the desired 

outcome. The strengths tab helps the user perfect the shaping and curvature at the intersections of different cross-

sections. As mentioned before, ‘strength’ is a term used by OpenVSP that defines the distance a line goes out from a 

cross-section before curving to meet the next cross-section. Normally, if a user were going through cross-section by 

cross-section or designing their own engine from scratch, strength is just a number that would be added onto the 

cross-section line. However, since it takes a lot of experience and trial and error to determine what numerical 

strength value creates the desired curvature, the slider format is beneficial. By controlling the strength values with a 

slider, a real-time representation of the strength can be observed, and a suitable value can be decided on easily.  The 

strengths tab allows the user to have complete control over the shaping of the inlet, max diameter, spinner, and 

trailing edges of the engine model. This includes control over both the left and right edges of the stated cross-

sections. The goal is that after going through the strengths section, the model will be precisely tuned to fit the needs 

of the user. 

IV.   Special Features 

A. Subsurfaces 

     The first of several special features that will be covered is the ability for the model to be defined using 

subsurfaces. After fully defining the model using the engine, nacelle, and strengths tab, if it is a user’s goal to do 

CFD calculations on the model, it will most likely be beneficial to add subsurfaces. This can be done by going into 

the analysis tab at the top of the OpenVSP application and clicking the ‘CompGeom’ tab. Doing this divides the 

engine model into predefined subsections (shown in Figure 7).  

 

Figure 7. Engine model with defined subsections. In Figure 7, each change in the color of the engine represents a 

new subsection. The subsections are numbered starting from the red spinner on the left and moving toward the right 

tip of the turbine plug. These subsections can later be called by number in CFD to define the boundary conditions of 

integral areas. 

      The advantage of this is that there can be surfaces defined for the inlet, fan face, core exhaust, and fan exhaust. 

When the model with these defined surfaces is exported into a CFD solver, specific boundary and flow conditions 

can be defined for each subsurface. This successfully improves the engine model beyond a simple cylindrical 

representation where only inlet and exit conditions are defined. By having the core and fan exhaust surfaces defined 

separately, advanced calculations can be done on the model that will truly represent the realistic conditions of a 

dual-stream turbofan engine. Furthermore, having this engine model in OpenVSP makes it so that the subsurfaces 
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can be added with one click, simplifying the process of going through and defining individual surfaces. For 

example, the user can simply tell the CFD solver to use Subsurface 2 to represent the fan intake, Subsurface 6 to 

represent the fan exhaust, and Subsurface 10 to represent the core exhaust. These quick and easy steps, taking only a 

couple of minutes, can significantly boost the precision of the model and subsequent CFD calculations. 

B. Overlay Background 

     One of OpenVSP’s most advantageous features is the ability to upload an image into the background of the 

application. This becomes helpful because users can take a two-dimensional figure of an image, set it as the 

application background, change the engine component to mesh so that it is see-through, and then design the engine 

over top of the figure. This makes it simple to take any technical drawing of a turbofan engine and have a very close 

approximation of that exact model but in 3D form. This process can be seen below in Figure 8 where a GE90 Engine 

diagram from WATE++, as taken from Tong and Naylor’s work, was modeled using the overlay background feature 

in OpenVSP [2]. 

 

 a) Engine figure added to the background of OpenVSP [2]           b) Mesh model overlaying background figure 

 

c) Final engine after removing the background figure and changing the wire mesh to a shaded surface 

Figure 8. Process of modeling an engine over a background image.  

     To use the overlay capability, the user must hover over the window tab in the top right-hand corner, and select 

background. Next, the box saying ‘image’ must be checked, allowing the user to import any engine figure or picture 

they would like onto the background of the page. This overlay feature acts as a proof of concept for the speed and 

ease of use of the customizable engine model. When using the overlay feature, order is crucial as some of the 

features have other parameters that they are dependent on. To make the modeling process as simple as possible the 

user should start at the nacelle tab and work their way to the right, finishing with strengths. The model does not have 

to be completely precise in the first two tabs as it is difficult to get all of the parameters correct without altering the 

strengths, which are in the last tab. If the model varies slightly from the background after going through the first two 
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tabs, it will most likely fix itself with the more fine-tuned controls in the third tab. This process can take a little 

getting used to, but the large amount of controllability is what makes this model beneficial. The overarching goal 

was to make it easier to add a more accurate engine component to OpenVSP and improve the overall model and any 

future CFD calculations. The sliders and visual aspect of the background overlay feature make it simple and 

intuitive for any engine design to be traced, even for those that do not have previous OpenVSP experience. The 

adjustable parameters are in terms that are well-known in the aerospace field and do not take extra research to put 

together. The entire process of uploading the image and adjusting all of the sliders of the engine can be done in a 

few brief minutes, and the outcome is a much more realistic and accurate engine than was available beforehand.  

C. Scarfing 

     Lastly, another important feature that was made available by the customizable turbofan engine component is the 

scarfing feature (Figure 9). Scarfing refers to how, in some engines, the front inlet cross-section is not completely 

vertical, but instead slightly angled to reduce noise, optimize aerodynamics, and provide other advantages over an 

inlet that is completely perpendicular to the central axis. The angle of scarfing is controlled by the “Inlet Scarf” 

slider where zero represents no scarf, and when slid to the right, the increasing number corresponds to the angle (in 

degrees) the scarfed cross-section is tilted from vertical. 

 

 

Figure 9. Demonstration of the engine scarfing component. The scarfing 

of the engine above is controlled by the ‘Inlet Scarf’ slider in the Nacelle tab.  

The scarfing above is 8° from vertical according to the slider. 

     The scarfing feature provides an advantage over simpler models that assume a completely axisymmetric design. 

A large portion of engines are non-axisymmetric and the ability to capture this in modeling is an important 

characteristic to have. Additionally, if someone decided to use a stack or a plain cylindrical model as a flow-through 

engine, adjusting a cylinder to have this precision could be a daunting task. By automatically building in the 
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capability to scarf the engine model, a complicated process was made a lot simpler, and a very common feature in 

engine design was made easily accessible. 

V.   Future Work 

A. Inlet Design 

     One of the most important and complicated aspects of engines involves the design and shaping of the inlet. 

Though several techniques to parametrize the inlet were explored, none have been implemented yet. This component 

is mainly focused on the CFD application of the model as opposed to internal engine design. Because this project 

was not focused on the interior, mechanical features of the turbofan, shaping the inlet was one of the most important 

external parts of the model to focus on. The inlet must be designed in such a way that when air encounters the 

engine, flow separation and drag are minimized. If any of the angles on the inlet are too sharp or not designed with 

the correct curvature, then as soon as the angle of attack changes, the engine will no longer be optimized. As a 

result, inlet design was one of the more complicated portions of the engine and called for a lot of concentration. 

There are two main ways that a user can quickly design an adequate inlet using the model. 

1. Elliptical Profile 

     The first option involves using a set of ellipses to shape the interior and exterior of the cowl. This would look 

something like what is displayed in Figure 10, with the red circle shaping the exterior cowl lip (the portion of the cowl 

above the yellow line) and the blue ellipse shaping the interior cowl lip (below the yellow line). Oftentimes, the upper 

cowl is guided by an ellipse with an aspect ratio of 1:1, and the lower cowl is guided by a ratio of 2:1. Frequently 

inlets are defined by these kinds of elliptical profiles, and while the aspect ratios could change based on the model, 

the concept stays the same. OpenVSP uses strengths to define curvature, meaning that the user controls how far a line 

goes out at a certain angle before it curves. This makes the inlet modeling process somewhat difficult, as it is hard to 

look at a certain numerical strength value and ensure it accurately represents a correct curvature.  

Figure 10. Two elliptical cross-sections define the inlet. In  

Figure 10 the red (1:1) and blue (2:1) elliptical cross-sections  

define the upper and lower cowl curvature of the inlet 

 

     Given this, the easiest way to get the inlet to follow an elliptical profile is by importing two stacks (cylindrical 

components defined by cross-sections) into the model and configuring them so that they consist of a single elliptical 

cross-section. The ellipse can then be moved to the highlight diameter by going into the ‘XForm’ tab, turning on UW, 

translation, and adjusting the U-coordinates until the ellipse is centered around the highlight diameter cross-section 

(shown in Figure 11). Then, by adjusting the x-location to a positive value equal to the semi-major axis, or half the 

width of the ellipse, the stack will be positioned precisely at the edge of the inlet. 
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Figure 11. Method of positioning elliptical stacks on the  

inlet correctly. The coordinate system of this stack is positioned at  

the left edge of the highlight cross-sections, by adjusting U and the XLoc  

sliders, the ellipses can be positioned such that they look like Figure 10. 

 

The same process can be used for another stack, and the aspect ratio can be adjusted so that the size of the ellipse 

creates an inlet shape that is appropriate for the engine. Using the ellipses as a guide to follow, the user can then adjust 

the inlet using the parameters under ‘Inlet Design’ in the nacelle tab and inlet parameters in the strengths tab. Through 

these steps, an accurate inlet mold can be created for the engine model, and the geometry should respond positively 

to CFD. 

 

2. NACA-1 Profile 

  

     The other method that is oftentimes used to define the inlet is to have the inlet follow the curvature of a NACA-1 

airfoil. The NACA-1 airfoil is already suitable for the aerodynamics of an aircraft in flight, and by utilizing it on the 

engine, drag can be minimized. The NACA-1 curving of the inlet was originally done by plotting a curve through a 

series of points that corresponded with the airfoil. Later, it was found that this shaping could be formed by typing in 

a specific number for that engine that represented the inlet curvature when it was set to follow the NACA-1 geometry.  

     Through conversations with an inlet designer, it was found that the most common way of defining an inlet would 

be to use the elliptical profiling on the interior cowl, or underside of the inlet, and the NACA-1 pattern on the exterior 

cowl [3]. In future work, a way to implement this design properly could be found. Since there are many various ways 

to define an inlet and a lot of them depend on user preference, it was difficult to decide on a concrete way to simplify 

this portion of the engine. One idea was to have a slider where if the user drags it to one side, the inlet takes on the 

shaping of a NACA-1 profile, if it is dragged to the other end, it follows an elliptical shape with a 2:1 ratio, and in the 

middle, the OpenVSP strengths remain, and users can adjust the curvature of the model precisely to their liking. This 

technique could be implemented in future versions of the model. 

 

B. Computational Fluid Dynamics 

 

     An ideal future addition to the engine is the ability to quickly import the model into a CFD solver. In theory, 

integrating the engine component with existing CFD export techniques for OpenVSP should be a smooth process. 

However, this has yet to be tested due to a lack of access to CFD software and minimal exposure to various CFD 

solvers. However, the customizable turbofan engine component has been developed with this capability in mind, even 

if it is not yet implemented. Furthermore, the layout and capabilities in OpenVSP, such as subsurfaces that allow easy 

section breaks for the definition of boundary conditions, should make the process of importing the engine into a CFD 

solver smooth and simple. There should not be a lot of work necessary to make this feature functional.  
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C. User Input 

 

      Though the customizable turbofan engine component is certainly an improvement to the current methods used to 

quickly design and model engines, the real improvement will come from user input. The most difficult part of 

designing this model was deciding which parameters the user should have control over, and which parameters should 

be controlled behind the scenes. In addition, as mentioned at the beginning of the paper, choosing how variables would 

be controlled, for example, area or diameter, was a difficult decision to make. The only way to truly know what works 

best is to get the model out to the public and allow users with different levels of experience, backgrounds, and projects 

to decide what works best for them. By understanding what kind of preferences a wide range of people might have, 

the model can be better customized to fit the general needs of its users.  

     That being said, this model is a starting model intended to be a beta release. It is not perfect, and will not fit the 

exact needs of everyone who uses it, but it will help lay the groundwork for future development. It is the hope that 

users will leverage this component to make their models slightly easier and more accurate while providing feedback, 

and, if desired, customizing the code themselves. OpenVSP’s open-source nature allows users to easily modify the 

CustomScript file of the engine component to suit their specific needs, while providing valuable feedback for future 

improvement. 

VI.    Concluding Remarks 

Prior to this customizable turbofan engine component, OpenVSP lacked the capability of importing and 

parametrically adjusting an engine component. Consequently, users often omitted the engines from their models or 

used simple cylindrical flow-through engines for CFD calculations. This limited the accuracy of the calculations and 

aircraft models severely. However, the process of making an accurate turbofan engine involved going through a long 

and cumbersome process of developing the model cross-section by cross-section. The goal of this project was to 

streamline that process and limit the long, drawn-out design that was currently required. The customizable turbofan 

engine strikes a balance between designing an engine from scratch and using a completely pre-defined, non-

customizable component. Through the implementation of this engine component, fully modeling a complete engine 

or aircraft is both accelerated and simplified. Additionally, this model can be overlaid on top of a 2D figure and a 3D 

replica of an engine can be created. The code for this model is published on GitHub where it will hopefully be used, 

modified, and made better by a broad range of users. This collaborative effort ultimately aims to make the process of 

modeling and conducting CFD calculations easier and more precise. 
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